Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 69

Answer

$$K = \frac{1}{{2\sqrt 2 }},{\text{ }}r = 2\sqrt 2 $$

Work Step by Step

$$\eqalign{ & y = \ln x,{\text{ }}x = 1 \cr & {\text{Calculate the curvature, use }}K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}} \cr & {\text{Find }}y'\left( x \right){\text{ and }}y''\left( x \right){\text{ }} \cr & y'\left( x \right) = \frac{d}{{dx}}\left[ {\ln x} \right] \cr & y'\left( x \right) = \frac{1}{x} \cr & {\text{Evaluate at }}x = 1 \cr & y'\left( 1 \right) = \frac{1}{1} = 1 \cr & y''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{x}} \right] \cr & y''\left( x \right) = - \frac{1}{{{x^2}}} \cr & {\text{Evaluate at }}x = 1 \cr & y''\left( 1 \right) = - \frac{1}{{{1^2}}} = 1 \cr & \underbrace {K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}}}_ \Downarrow \cr & {\text{ at }}x = 0 \cr & K = \frac{{\left| 1 \right|}}{{{{\left( {1 + {{\left[ 1 \right]}^2}} \right)}^{3/2}}}} \cr & K = \frac{1}{{2\sqrt 2 }} \cr & {\text{The radius of curvature is }}r = \frac{1}{K} \cr & r = 2\sqrt 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.