Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 66

Answer

\[K = \frac{2}{5}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = 4\cos t{\mathbf{i}} + 3\sin t{\mathbf{j}} + t{\mathbf{k}},{\text{ }}P\left( { - 4,0,\pi } \right) \hfill \\ {\text{For }}t = \pi \hfill \\ {\mathbf{r}}\left( \pi \right) = 4\cos \left( \pi \right){\mathbf{i}} + 3\sin \left( \pi \right){\mathbf{j}} + \pi {\mathbf{k}} \hfill \\ {\mathbf{r}}\left( \pi \right) = - 4{\mathbf{i}} + 0{\mathbf{j}} + \pi {\mathbf{k}} \hfill \\ {\text{Then }}t = \pi {\text{ at the point }}P\left( { - 4,0,\pi } \right) \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = 4\cos t{\mathbf{i}} + 3\sin t{\mathbf{j}} + t{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) = - 4\sin t{\mathbf{i}} + 3\cos t{\mathbf{j}} + {\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( t \right) = - 4\cos t{\mathbf{i}} - 3\sin t{\mathbf{j}} + 0{\mathbf{k}} \hfill \\ {\text{At }}t = \pi \hfill \\ {\mathbf{r}}'\left( \pi \right) = - 4\sin \left( \pi \right){\mathbf{i}} + 3\cos \left( \pi \right){\mathbf{j}} + {\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( \pi \right) = 0{\mathbf{i}} - 3{\mathbf{j}} + {\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( \pi \right) = - 4\cos \left( \pi \right){\mathbf{i}} - 3\sin \left( \pi \right){\mathbf{j}} + 0{\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( \pi \right) = 4{\mathbf{i}} + 0{\mathbf{j}} + 0{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( \pi \right) \times {\mathbf{r}}''\left( \pi \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 0&{ - 3}&1 \\ 4&0&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( \pi \right) \times {\mathbf{r}}''\left( \pi \right) = \left( 0 \right){\mathbf{i}} - \left( {0 - 4} \right){\mathbf{j}} + \left( {0 + 12} \right){\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( \pi \right) \times {\mathbf{r}}''\left( \pi \right) = 0{\mathbf{i}} + 4{\mathbf{j}} + 12{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( \pi \right) \times {\mathbf{r}}''\left( \pi \right)} \right\| = \sqrt {{{\left( 0 \right)}^2} + {{\left( 4 \right)}^2} + {{\left( {12} \right)}^2}} \hfill \\ \left\| {{\mathbf{r}}'\left( \pi \right) \times {\mathbf{r}}''\left( \pi \right)} \right\| = \sqrt {160} \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( \pi \right)} \right\| = \left\| {0{\mathbf{i}} - 3{\mathbf{j}} + {\mathbf{k}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( \pi \right)} \right\| = \sqrt {0 + 9 + 1} = \sqrt {10} \hfill \\ {\text{Therefore, the curvature at the point }}P\left( { - 4,0,\pi } \right){\text{ is at }}t = \pi \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( \pi \right) \times {\mathbf{r}}''\left( \pi \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( \pi \right)} \right\|}^3}}} = \frac{{\sqrt {160} }}{{{{\left( {\sqrt {10} } \right)}^3}}} \hfill \\ K = \frac{{\sqrt {160} }}{{10\sqrt {10} }} \hfill \\ K = \frac{2}{5} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.