Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 63

Answer

\[K = \frac{{2\sqrt 5 }}{{{{\left( {4 + 5{t^2}} \right)}^{3/2}}}}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = 2t{\mathbf{i}} + \frac{1}{2}{t^2}{\mathbf{j}} + {t^2}{\mathbf{k}} \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = 2t{\mathbf{i}} + \frac{1}{2}{t^2}{\mathbf{j}} + {t^2}{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) = 2{\mathbf{i}} + t{\mathbf{j}} + 2t{\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( t \right) = 0{\mathbf{i}} + 2{\mathbf{j}} + 2{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 2&t&{2t} \\ 0&1&2 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} t&{2t} \\ 1&2 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} 2&{2t} \\ 0&2 \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} 2&t \\ 0&1 \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = 0{\mathbf{i}} - 4{\mathbf{j}} + 2{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = \sqrt {16 + 4} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = \sqrt {20} \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \left\| {2{\mathbf{i}} + t{\mathbf{j}} + 2t{\mathbf{k}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {4 + {t^2} + 4{t^2}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {4 + 5{t^2}} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{\sqrt {20} }}{{{{\left( {\sqrt {4 + 5{t^2}} } \right)}^3}}} \hfill \\ {\text{Simplifying}} \hfill \\ K = \frac{{2\sqrt 5 }}{{{{\left( {4 + 5{t^2}} \right)}^{3/2}}}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.