Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 62

Answer

\[\frac{3}{2{{t}^{3}}{{\left( \sqrt{9t+1} \right)}^{3}}}\]

Work Step by Step

\[\begin{align} & \mathbf{r}\left( t \right)=2\sqrt{t}\mathbf{i}+3t\mathbf{j} \\ & \text{By Theorem 12}\text{.8 } \\ & \text{If }C\text{ is a smooth curve given by }\mathbf{r}\left( t \right),\text{ then the curvature }K\text{ of} \\ & C\text{ at }t\text{ is }K=\frac{\left\| \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right) \right\|}{{{\left\| \mathbf{r}'\left( t \right) \right\|}^{3}}} \\ & \mathbf{r}\left( t \right)=2\sqrt{t}\mathbf{i}+3t\mathbf{j} \\ & \mathbf{r}'\left( t \right)=\frac{1}{\sqrt{t}}\mathbf{i}+3\mathbf{j} \\ & \mathbf{r}''\left( t \right)=-\frac{1}{2}{{t}^{-3/2}}\mathbf{i}+0\mathbf{j} \\ & \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right)=\left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ {{t}^{-1/2}} & 3 & 0 \\ -\frac{1}{2}{{t}^{-3/2}} & 0 & 0 \\ \end{matrix} \right| \\ & \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right)=\left| \begin{matrix} 3 & 0 \\ 3 & 0 \\ \end{matrix} \right|\mathbf{i}-\left| \begin{matrix} {{t}^{-1/2}} & 0 \\ -\frac{1}{2}{{t}^{-3/2}} & 0 \\ \end{matrix} \right|\mathbf{j}+\left| \begin{matrix} {{t}^{-1/2}} & 3 \\ -\frac{1}{2}{{t}^{-3/2}} & 0 \\ \end{matrix} \right|\mathbf{k} \\ & \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right)=\frac{3}{2}{{t}^{-3/2}}\mathbf{k} \\ & \left\| \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right) \right\|=\frac{3}{2}{{t}^{-3/2}} \\ & and \\ & \left\| \mathbf{r}'\left( t \right) \right\|=\left\| \frac{1}{\sqrt{t}}\mathbf{i}+3\mathbf{j} \right\| \\ & \left\| \mathbf{r}'\left( t \right) \right\|=\sqrt{{{\left( \frac{1}{\sqrt{t}} \right)}^{2}}+{{\left( 3 \right)}^{2}}} \\ & \left\| \mathbf{r}'\left( t \right) \right\|=\sqrt{\frac{1}{t}+9} \\ & \text{Therefore,} \\ & K=\frac{\left\| \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right) \right\|}{{{\left\| \mathbf{r}'\left( t \right) \right\|}^{3}}}=\frac{\frac{3}{2}{{t}^{-3/2}}}{{{\left( \sqrt{\frac{1}{t}+9} \right)}^{3}}} \\ & \text{Simplifying} \\ & K=\frac{\frac{3}{2}{{t}^{-3/2}}}{{{\left( \frac{\sqrt{9t+1}}{{{t}^{1/2}}} \right)}^{3}}}=\frac{3}{2{{t}^{3}}{{\left( \sqrt{9t+1} \right)}^{3}}} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.