Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 61

Answer

$$K = 0$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 3t{\bf{i}} + 2t{\bf{j}} \cr & {\text{By Theorem 12}}{\text{.8 }} \cr & {\text{If }}C{\text{ is a smooth curve given by }}{\bf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \cr & C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\bf{r}}'\left( t \right)} \right\|}^3}}} \cr & {\bf{r}}\left( t \right) = 3t{\bf{i}} + 2t{\bf{j}} \cr & {\bf{r}}'\left( t \right) = 3{\bf{i}} + 2{\bf{j}} \cr & {\bf{r}}''\left( t \right) = 0 \cr} $$ \[\begin{gathered} {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 3&2&0 \\ 0&0&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = 0 \hfill \\ \end{gathered} \] $$\eqalign{ & {\text{Therefore,}} \cr & K = \frac{{\left\| {{\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\bf{r}}'\left( t \right)} \right\|}^3}}} = \frac{0}{{{{\left\| {3{\bf{i}} + 2{\bf{j}}} \right\|}^3}}} \cr & K = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.