Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 50

Answer

$${\bf{N}}\left( {\frac{{2\pi }}{3}} \right) = \frac{1}{2}{\bf{i}} - \frac{{\sqrt 3 }}{2}{\bf{j}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 4\cos t{\bf{i}} + 4\sin t{\bf{j}} + {\bf{k}},{\text{ }}t = \frac{{2\pi }}{3} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {4\cos t{\bf{i}} + 4\sin t{\bf{j}} + {\bf{k}}} \right] \cr & {\bf{r}}'\left( t \right) = - 4\sin t{\bf{i}} + 4\cos t{\bf{j}} \cr & {\text{Find the unit Tangent Vector }}{\bf{T}}\left( t \right) \cr & {\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{\left\| {{\bf{r}}'\left( t \right)} \right\|}},{\text{ }}{\bf{r}}'\left( t \right) \ne 0 \cr & {\bf{T}}\left( t \right) = \frac{{ - 4\sin t{\bf{i}} + 4\cos t{\bf{j}}}}{{\left\| { - 4\sin t{\bf{i}} - 4\cos t{\bf{j}}} \right\|}} = \frac{{ - 4\sin t{\bf{i}} + 4\cos t{\bf{j}}}}{{\sqrt {16{{\sin }^2}t + 16{{\cos }^2}t} }} \cr & {\bf{T}}\left( t \right) = \frac{{ - 4\sin t{\bf{i}} + 4\cos t{\bf{j}}}}{4} \cr & {\bf{T}}\left( t \right) = - \sin t{\bf{i}} + \cos t{\bf{j}} \cr & {\text{Find }}{\bf{T}}'\left( t \right) \cr & {\bf{T}}'\left( t \right) = \frac{d}{{dt}}\left[ { - \sin t{\bf{i}} + \cos t{\bf{j}}} \right] \cr & {\bf{T}}'\left( t \right) = - \cos t{\bf{i}} - \sin t{\bf{j}} \cr & {\text{Evaluate }}{\bf{T}}'\left( t \right){\text{ at }}t = \frac{{2\pi }}{3} \cr & {\bf{T}}'\left( {\frac{{2\pi }}{3}} \right) = - \cos \left( {\frac{{2\pi }}{3}} \right){\bf{i}} - \sin \left( {\frac{{2\pi }}{3}} \right){\bf{j}} \cr & {\bf{T}}'\left( {\frac{{2\pi }}{3}} \right) = \frac{1}{2}{\bf{i}} - \frac{{\sqrt 3 }}{2}{\bf{j}} \cr & {\text{Finding the Principal Unit Normal Vector}} \cr & {\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{\left\| {{\bf{T}}'\left( t \right)} \right\|}} \cr & {\text{Evaluate }}{\bf{N}}'\left( t \right){\text{ at }}t = \frac{{2\pi }}{3} \cr & {\bf{N}}\left( {\frac{{2\pi }}{3}} \right) = \frac{{{\bf{T}}'\left( {2\pi /3} \right)}}{{\left\| {{\bf{T}}'\left( {2\pi /3} \right)} \right\|}} = \frac{{\frac{1}{2}{\bf{i}} - \frac{{\sqrt 3 }}{2}{\bf{j}}}}{{\left\| {\frac{1}{2}{\bf{i}} - \frac{{\sqrt 3 }}{2}{\bf{j}}} \right\|}} \cr & {\bf{N}}\left( {\frac{{2\pi }}{3}} \right) = \frac{{\frac{1}{2}{\bf{i}} - \frac{{\sqrt 3 }}{2}{\bf{j}}}}{1} \cr & {\bf{N}}\left( {\frac{{2\pi }}{3}} \right) = \frac{1}{2}{\bf{i}} - \frac{{\sqrt 3 }}{2}{\bf{j}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.