Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 68

Answer

$$K = \frac{2}{{5\sqrt 5 }},{\text{ }}r = \frac{{5\sqrt 5 }}{2}$$

Work Step by Step

$$\eqalign{ & y = {e^{ - x/2}},{\text{ }}x = 0 \cr & {\text{Calculate the curvature, use }}K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}} \cr & {\text{Find }}y'\left( x \right){\text{ and }}y''\left( x \right){\text{}} \cr & y'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{ - x/2}}} \right] \cr & y'\left( x \right) = - \frac{1}{2}{e^{ - x/2}} \cr & {\text{Evaluate at }}x = 0 \cr & y'\left( 0 \right) = - \frac{1}{2}{e^0} = - \frac{1}{2} \cr & y''\left( x \right) = \frac{d}{{dx}}\left[ { - \frac{1}{2}{e^{ - x/2}}} \right] \cr & y''\left( x \right) = \frac{1}{4}{e^{ - x/2}} \cr & {\text{Evaluate at }}x = 0 \cr & y''\left( 0 \right) = \frac{1}{4}{e^0} = \frac{1}{4} \cr & \underbrace {K = \frac{{\left| {y''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {y'\left( x \right)} \right]}^2}} \right)}^{3/2}}}}}_ \Downarrow \cr & {\text{ at }}x = 0 \cr & K = \frac{{\left| {\frac{1}{4}} \right|}}{{{{\left( {1 + {{\left[ {1/2} \right]}^2}} \right)}^{3/2}}}} \cr & K = \frac{{1/4}}{{{{\left( {5/4} \right)}^{3/2}}}} \cr & K = \frac{{\frac{1}{4}}}{{\frac{{5\sqrt 5 }}{8}}} \cr & K = \frac{2}{{5\sqrt 5 }} \cr & {\text{The radius of curvature is }}r = \frac{1}{K} \cr & r = \frac{{5\sqrt 5 }}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.