Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 48

Answer

$${\bf{N}}\left( 2 \right) = \frac{1}{{\sqrt 5 }}{\bf{i}} - \frac{2}{{\sqrt 5 }}{\bf{j}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = t{\bf{i}} + \ln t{\bf{j}},{\text{ }}t = 2 \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {t{\bf{i}} + \ln t{\bf{j}}} \right] \cr & {\bf{r}}'\left( t \right) = {\bf{i}} + \frac{1}{t}{\bf{j}} \cr & {\text{Find the unit Tangent Vector }}{\bf{T}}\left( t \right) \cr & {\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{\left\| {{\bf{r}}'\left( t \right)} \right\|}},{\text{ }}{\bf{r}}'\left( t \right) \ne 0 \cr & {\bf{T}}\left( t \right) = \frac{{{\bf{i}} + \frac{1}{t}{\bf{j}}}}{{\left\| {{\bf{i}} + \frac{1}{t}{\bf{j}}} \right\|}} = \frac{{{\bf{i}} + \frac{1}{t}{\bf{j}}}}{{\sqrt {1 + \frac{1}{{{t^2}}}} }} = \frac{{t\left( {{\bf{i}} + \frac{1}{t}{\bf{j}}} \right)}}{{\sqrt {{t^2} + 1} }} = \frac{{t{\bf{i}} + {\bf{j}}}}{{\sqrt {{t^2} + 1} }} \cr & {\text{Find }}{\bf{T}}'\left( t \right) \cr & {\bf{T}}'\left( t \right) = \frac{d}{{dt}}\left[ {\frac{t}{{\sqrt {{t^2} + 1} }}{\bf{i}} + \frac{1}{{\sqrt {{t^2} + 1} }}{\bf{j}}} \right] \cr & {\text{Differentiate by hand and replace}} \cr & {\bf{T}}'\left( t \right) = \frac{1}{{{{\left( {{t^2} + 1} \right)}^{3/2}}}}{\bf{i}} - \frac{t}{{{{\left( {{t^2} + 1} \right)}^{3/2}}}}{\bf{j}} \cr & {\text{Evaluate }}{\bf{T}}'\left( t \right){\text{ at }}t = 2 \cr & {\bf{T}}'\left( 2 \right) = \frac{1}{{{{\left( {{2^2} + 1} \right)}^{3/2}}}}{\bf{i}} - \frac{2}{{{{\left( {{2^2} + 1} \right)}^{3/2}}}}{\bf{j}} \cr & {\bf{T}}'\left( 2 \right) = \frac{1}{{{5^{3/2}}}}{\bf{i}} - \frac{2}{{{5^{3/2}}}}{\bf{j}} \cr & {\text{Finding the Principal Unit Normal Vector}} \cr & {\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{\left\| {{\bf{T}}'\left( t \right)} \right\|}} \cr & {\text{Evaluate }}{\bf{N}}'\left( t \right){\text{ at }}t = 2 \cr & {\bf{N}}\left( 2 \right) = \frac{{{\bf{T}}'\left( 2 \right)}}{{\left\| {{\bf{T}}'\left( 2 \right)} \right\|}} = \frac{{\frac{1}{{{5^{3/2}}}}{\bf{i}} - \frac{2}{{{5^{3/2}}}}{\bf{j}}}}{{\left\| {\frac{1}{{{5^{3/2}}}}{\bf{i}} - \frac{2}{{{5^{3/2}}}}{\bf{j}}} \right\|}} \cr & {\bf{N}}\left( 2 \right) = \frac{{\frac{1}{{{5^{3/2}}}}{\bf{i}} - \frac{2}{{{5^{3/2}}}}{\bf{j}}}}{{1/5}} \cr & {\bf{N}}\left( 2 \right) = \frac{1}{{\sqrt 5 }}{\bf{i}} - \frac{2}{{\sqrt 5 }}{\bf{j}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.