Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 65

Answer

\[K = \frac{{\sqrt 2 }}{3}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = \frac{1}{2}{t^2}{\mathbf{i}} + t{\mathbf{j}} + \frac{1}{3}{t^3}{\mathbf{k}},{\text{ }}P\left( {\frac{1}{2},1,\frac{1}{3}} \right) \hfill \\ {\text{For }}t = 1 \hfill \\ {\mathbf{r}}\left( 1 \right) = \frac{1}{2}{\left( 1 \right)^2}{\mathbf{i}} + \left( 1 \right){\mathbf{j}} + \frac{1}{3}{\left( 1 \right)^3}{\mathbf{k}} \hfill \\ {\mathbf{r}}\left( 1 \right) = \frac{1}{2}{\mathbf{i}} + {\mathbf{j}} + \frac{1}{3}{\mathbf{k}} \hfill \\ {\text{Then }}t = 1{\text{ at the point }}P\left( {\frac{1}{2},1,\frac{1}{3}} \right) \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = \frac{1}{2}{t^2}{\mathbf{i}} + t{\mathbf{j}} + \frac{1}{3}{t^3}{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) = t{\mathbf{i}} + {\mathbf{j}} + {t^2}{\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( t \right) = {\mathbf{i}} + 0{\mathbf{j}} + 2t{\mathbf{k}} \hfill \\ {\text{At }}t = 1 \hfill \\ {\mathbf{r}}'\left( 1 \right) = {\mathbf{i}} + {\mathbf{j}} + {\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( 1 \right) = {\mathbf{i}} + 0{\mathbf{j}} + 2{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( 1 \right) \times {\mathbf{r}}''\left( 1 \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 1&1&1 \\ 1&0&2 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( 1 \right) \times {\mathbf{r}}''\left( 1 \right) = \left( {2 - 0} \right){\mathbf{i}} - \left( {2 - 1} \right){\mathbf{j}} + \left( {0 - 1} \right){\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( 1 \right) \times {\mathbf{r}}''\left( 1 \right) = 2{\mathbf{i}} - {\mathbf{j}} - {\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( 1 \right) \times {\mathbf{r}}''\left( 1 \right)} \right\| = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} \hfill \\ \left\| {{\mathbf{r}}'\left( 1 \right) \times {\mathbf{r}}''\left( 1 \right)} \right\| = \sqrt 6 \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( 1 \right)} \right\| = \left\| {{\mathbf{i}} + {\mathbf{j}} + {\mathbf{k}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( 1 \right)} \right\| = \sqrt 3 \hfill \\ {\text{Therefore, the curvature at the point }}P\left( {\frac{1}{2},1,\frac{1}{3}} \right){\text{ is at }}t = 1 \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( 1 \right) \times {\mathbf{r}}''\left( 1 \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( 1 \right)} \right\|}^3}}} = \frac{{\sqrt 6 }}{{{{\left( {\sqrt 3 } \right)}^3}}} \hfill \\ K = \frac{{\sqrt 6 }}{{3\sqrt 3 }} \hfill \\ K = \frac{{\sqrt 2 }}{3} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.