Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 47

Answer

$${\bf{N}}\left( 1 \right) = - \frac{3}{{\sqrt {10} }}{\bf{i}} + \frac{1}{{\sqrt {10} }}{\bf{j}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 2t{\bf{i}} + 3{t^2}{\bf{j}},{\text{ }}t = 1 \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {2t{\bf{i}} + 3{t^2}{\bf{j}}} \right] \cr & {\bf{r}}'\left( t \right) = 2{\bf{i}} + 6t{\bf{j}} \cr & {\text{Find the unit Tangent Vector }}{\bf{T}}\left( t \right) \cr & {\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{\left\| {{\bf{r}}'\left( t \right)} \right\|}},{\text{ }}{\bf{r}}'\left( t \right) \ne 0 \cr & {\bf{T}}\left( t \right) = \frac{{2{\bf{i}} + 6t{\bf{j}}}}{{\left\| {2{\bf{i}} + 6t{\bf{j}}} \right\|}} = \frac{{2{\bf{i}} + 6t{\bf{j}}}}{{\sqrt {4 + 36{t^2}} }} \cr & {\text{Find }}{\bf{T}}'\left( t \right) \cr & {\bf{T}}'\left( t \right) = \frac{d}{{dt}}\left[ {\frac{2}{{\sqrt {4 + 36{t^2}} }}{\bf{i}} + \frac{{6t}}{{\sqrt {4 + 36{t^2}} }}{\bf{j}}} \right] \cr & {\text{Differentiate by hand and replace}} \cr & {\bf{T}}'\left( t \right) = - \frac{{9t}}{{{{\left( {9{t^2} + 1} \right)}^{3/2}}}}{\bf{i}} + \frac{3}{{{{\left( {9{t^2} + 1} \right)}^{3/2}}}}{\bf{j}} \cr & {\text{Evaluate }}{\bf{T}}'\left( t \right){\text{ at }}t = 1 \cr & {\bf{T}}'\left( 1 \right) = - \frac{{9\left( 1 \right)}}{{{{\left( {9{{\left( 1 \right)}^2} + 1} \right)}^{3/2}}}}{\bf{i}} + \frac{3}{{{{\left( {9{{\left( 1 \right)}^2} + 1} \right)}^{3/2}}}}{\bf{j}} \cr & {\bf{T}}'\left( 1 \right) = - \frac{9}{{{{10}^{3/2}}}}{\bf{i}} + \frac{3}{{{{10}^{3/2}}}}{\bf{j}} \cr & {\text{Finding the Principal Unit Normal Vector}} \cr & {\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{\left\| {{\bf{T}}'\left( t \right)} \right\|}} \cr & {\text{Evaluate }}{\bf{N}}'\left( t \right){\text{ at }}t = 1 \cr & {\bf{N}}\left( 1 \right) = \frac{{{\bf{T}}'\left( 1 \right)}}{{\left\| {{\bf{T}}'\left( 1 \right)} \right\|}} = \frac{{ - \frac{9}{{{{10}^{3/2}}}}{\bf{i}} + \frac{3}{{{{10}^{3/2}}}}{\bf{j}}}}{{\left\| { - \frac{9}{{{{10}^{3/2}}}}{\bf{i}} + \frac{3}{{{{10}^{3/2}}}}{\bf{j}}} \right\|}} \cr & {\bf{N}}\left( 1 \right) = \frac{{ - \frac{9}{{{{10}^{3/2}}}}{\bf{i}} + \frac{3}{{{{10}^{3/2}}}}{\bf{j}}}}{{3/10}} \cr & {\bf{N}}\left( 1 \right) = - \frac{3}{{\sqrt {10} }}{\bf{i}} + \frac{1}{{\sqrt {10} }}{\bf{j}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.