Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - Review Exercises - Page 864: 56

Answer

$$s = 20\pi $$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 10\cos t{\bf{i}} + 10\sin t{\bf{j}},{\text{ }}\left[ {0,2\pi } \right] \cr & {\text{Differentiate }}{\bf{r}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {10\cos t{\bf{i}} + 10\sin t{\bf{j}}} \right] \cr & {\bf{r}}'\left( t \right) = - 10\sin t{\bf{i}} + 10\cos t{\bf{j}} \cr & {\text{Find }}\left\| {{\bf{r}}'\left( t \right)} \right\| \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {{{\left( { - 10\sin t} \right)}^2} + {{\left( {10\cos t} \right)}^2}} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {100{{\sin }^2}t + 100{{\cos }^2}t} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {100} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = 10 \cr & {\text{Find the arc length }}s{\text{, using the formula }}s = \int_a^b {\left\| {{\bf{r}}'\left( t \right)} \right\|} dt \cr & s = \int_0^{2\pi } {10} dt \cr & {\text{Integrate}} \cr & s = \left[ {10t} \right]_0^{2\pi } \cr & s = 10\left[ {2\pi - 0} \right] \cr & s = 20\pi \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.