Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 52

Answer

$\frac{d^2y}{dx^2} =\frac{2y}{(y-x)^2} - \frac{y^2}{(y-x)^3}$

Work Step by Step

Applying the rules of derivatives: $2xy-y^2=3$ $\frac{d}{dx}[2xy-y^2] =\frac{d}{dx}[3] $ $2y + 2x\frac{dy}{dx}-2y\frac{dy}{dx} = 0$ $\frac{dy}{dx}(2x-2y) = -2y$ $\frac{dy}{dx} = -\frac{y}{x-y}= \frac{y}{y-x}$ $\frac{d^2y}{dx^2} = \frac{\frac{dy}{dx}(y-x)-(\frac{dy}{dx}-1)y}{(y-x)^2} = \frac{ \frac{y}{y-x}(y-x)-( \frac{y}{y-x}-1)y}{(y-x)^2} = \frac{y+y-\frac{y^2}{y-x}}{(y-x)^2} = \frac{2y}{(y-x)^2} - \frac{y^2}{(y-x)^3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.