Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 46

Answer

a) $\frac{dy}{dx} = \frac{1-y}{x+1}$ b) $\frac{dy}{dx} = \frac{1}{(x+1)^{2}}$ c) $\frac{dy}{dx} = \frac{1}{(x+1)^{2}}$

Work Step by Step

a) $xy = x-y$ Differentiating implicitly : $x\frac{dy}{dx} + y(1) = 1-\frac{dy}{dx}$ $x\frac{dy}{dx} + \frac{dy}{dx} = 1-y$ $(x+1)\frac{dy}{dx} = 1-y$ $\frac{dy}{dx} = \frac{1-y}{x+1}$ b) $y(x+1) = x$ $y = \frac{x}{x+1}$ Differentiating : $\frac{dy}{dx} = \frac{(x+1)(1)-x(1)}{(x+1)^{2}}$ $\frac{dy}{dx} = \frac{x+1-x}{(x+1)^{2}}$ $\frac{dy}{dx} = \frac{1}{(x+1)^{2}}$ c) $\frac{dy}{dx} = \frac{1-y}{x+1}$ As $y = \frac{x}{x+1}$ So, $\frac{dy}{dx} = \frac{1-\frac{x}{x+1}}{x+1}$ After simplification : $\frac{dy}{dx} = \frac{x+1-x}{(x+1)^{2}}$ $\frac{dy}{dx} = \frac{1}{(x+1)^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.