Answer
$\frac{dy}{dx} = \frac{ysec(xy)tan(xy)}{1-xsec(xy)tan(xy)}$
Work Step by Step
Applying the rules of derivatives:
$sec(xy) = y$
$\frac{d}{dx}[sec(xy)] =\frac{d}{dx}[y] $
$sec(xy) tan(xy)* (y + x\frac{dy}{dx}) = \frac{dy}{dx}$
$\frac{dy}{dx} ( 1-sec(xy)tan(xy)*x) = sec(xy)tan(xy) * y$
$\frac{dy}{dx} = \frac{ysec(xy)tan(xy)}{1-xsec(xy)tan(xy)}$