Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 51

Answer

$\frac{d^{2}y}{dx^{2}} = -\frac{21}{16y^{3}}$

Work Step by Step

$3x^{2}-4y^{2} = 7$ Differentiating implicitly : $6x - 8y\frac{dy}{dx} = 0$ $6x = 8y\frac{dy}{dx}$ $\frac{6x}{8y} = \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{3x}{4y}$ Again differentiating implicitly : $\frac{d^{2}y}{dx^{2}} = \frac{3}{4}[\frac{y(1)-x(\frac{dy}{dx})}{y^{2}}]$ $\frac{d^{2}y}{dx^{2}} = \frac{3}{4y^{2}}(y-x\frac{dy}{dx})$ As $\frac{dy}{dx} = \frac{3x}{4y}$ So, $\frac{d^{2}y}{dx^{2}} = \frac{3}{4y^{2}}[y-x(\frac{3x}{4y})]$ $\frac{d^{2}y}{dx^{2}} = \frac{3}{4y^{2}}(y-\frac{3x^{2}}{4y})$ $\frac{d^{2}y}{dx^{2}} = \frac{3}{4y^{2}}(\frac{4y^{2}-3x^{2}}{4y})$ $\frac{d^{2}y}{dx^{2}} = \frac{3}{16y^{3}}[-(3x^{2}-4y^{2})]$ As from the question statement we know that $3x^{2}-4y^{2} = 7$ So, $\frac{d^{2}y}{dx^{2}} = \frac{3}{16y^{3}}(-7)$ $\frac{d^{2}y}{dx^{2}} = -\frac{21}{16y^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.