Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 50

Answer

$\frac{dy}{dx} = -\frac{2x(1+cscy)}{cscy}$

Work Step by Step

$x^{2} = \frac{coty}{1+cscy}$ Solution : Differentiating implicitly : $2x = \frac{(1+cscy)(-csc^{2}y)(\frac{dy}{dx})-(coty)(-cscycoty)(\frac{dy}{dx})}{(1+cscy)^{2}}$ $2x(1+cscy)^{2} = -cscy(cscy + csc^{2}y - cot^{2}y)\frac{dy}{dx}$ As $csc^{2}y -cot^{2}y = 1$ So $2x(1+cscy)^{2} = -cscy(cscy + 1)\frac{dy}{dx}$ After simplification : $2x(1+cscy) = -cscy\frac{dy}{dx}$ $\frac{dy}{dx} = -\frac{2x(1+cscy)}{cscy}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.