Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 41

Answer

a) $g'(\frac{\pi}{3}) = 40\sqrt{3}$ b) h'(2) = 7500

Work Step by Step

We find: a) $g'(x) = f'(sec(x)) * sec(x)*tan(x)$ $g'(\frac{\pi}{3}) = f'(sec(\frac{\pi}{3})) * sec(\frac{\pi}{3})*tan(\frac{\pi}{3}) = f'(2) * 2 * \sqrt{3} = (2 * 2 * f(2)) * 2 * \sqrt{3} = (4*5)*2*\sqrt{3} = 40\sqrt{3}$ b) $h'(x) = 4 (\frac{f(x)}{(x-1)} )^3 * \frac{f'(x)*(x-1) - f(x)}{(x-1)^2}$ $h'(2) = 4 (\frac{f(2)}{(2-1)} )^3 * \frac{f'(2)*(2-1) - f(2)}{(2-1)^2} = 4 * (f(2))^3 * (f'(2) - f(2)) = 4 * (5)^3 * (2*2*f(2)-5) = 4 * 125 * (15) = 7500$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.