Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 32

Answer

a) $\frac{2\csc(2x)\cot(2x)(x^{3}+5)+3x^{2}\csc(2x)}{(x^{3}+5)^2}\times \csc^{2}\left(\frac{\csc(2x)}{x^{3}+5}\right)$ b) $-\frac{2+3\sin^{2}(x)\cos(x)}{(2x+\sin^{3}(x))^2}$

Work Step by Step

a) We have: $\cot\left(\frac{\csc(2x)}{x^{3}+5}\right)=f(x)$ $\implies$ First, we will differentiate the argument for cot $w.r.t.x$ Let the argument for cot be $A$. $\implies \frac{dA}{dx}=\frac{d\frac{\csc(2x)}{x^{3}+5}}{dx}= \frac{-2\csc(2x)\cot(2x)(x^{3}+5)-3x^{2}\csc(2x)}{(x^{3}+5)^2}\quad$(Quotient Rule) $\implies \frac{d \cot(A)}{dx} = \frac{d \cot(A)}{dA}\times\frac{dA}{dx}$ (Chain Rule) $\quad = \frac{2\csc(2x)\cot(2x)(x^{3}+5)+3x^{2}\csc(2x)}{(x^{3}+5)^2}\times \csc^{2}(\frac{\csc(2x)}{x^{3}+5})$ b) We have: $f(x) = \frac{1}{2x+\sin^{3}(x)}$ Differentiating $f(x)\space w.r.t.x:$ Let $2x+\sin^{3}(x) = A, \sin^{3}(x) =B$. $\implies f'(x) = \frac{d(\frac{1}{A})}{dA}\times\frac{dA}{dx} = -\frac{1}{(2x+\sin^{3}(x))^2}\times\frac{dA}{dx}\rightarrow ①$ $\implies \frac{dA}{dx} = \frac{d(2x+B)}{dx}=2+\frac{dB}{dx}\rightarrow②$ $\implies \frac{dB}{dx} = \frac{d(\sin^{3}(x))}{d(\sin(x))}\times\frac{d(\sin(x)}{dx} = 3\sin^{2}(x)\times \cos(x)$ Substituting this in $②$: $\implies \frac{dA}{dx} = 2+3\sin^{2}(x)\times \cos(x)$ Substituting this in $①$: $\therefore f'(x) = -\frac{1}{(2x+\sin^{3}(x))^2}\times2+3\sin^{2}(x)\times \cos(x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.