Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 31

Answer

a) $f'(x) = \frac{(x-1)(15x+1)}{2\sqrt{3x+1}}$ b) $f'(x) = \frac{-3 * (3x+1)^2 (3x+2)}{x^7}$

Work Step by Step

Using the rules of derivatives, we find: a) $f'(x) = [(3x+1)^{\frac{1}{2}}]'[(x-1)^2] +[(3x+1)^{\frac{1}{2}}][(x-1)^2]' = \frac{1}{2} * (3x+1)^{-\frac{1}{2}} * (x-1)^2 + (3x+1)^{\frac{1}{2}} * 2(x-1) = \frac{(x-1)(15x+1)}{2\sqrt{3x+1}}$ b) $f'(x) = 3 * (\frac{3x+1}{x^2})^2 * [\frac{3x+1}{x^2}]' = 3 * (\frac{3x+1}{x^2})^2 * \frac{3*x^2 - 2x * (3x+1)}{x^4} = \frac{-3 * (3x+1)^2 (3x+2)}{x^7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.