Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 185: 45

Answer

a) $\frac{dy}{dx} = \frac{2-y-3x^{2}}{x}$ b) $\frac{dy}{dx} = -\frac{1}{x^{2}}-2x$ c) $\frac{dy}{dx} = -\frac{1}{x^{2}}-2x$

Work Step by Step

a) $x^{3}+xy-2x = 1$ Differentiating implicitly : $3x^{2}+x\frac{dy}{dx}+y-2 = 0$ $x\frac{dy}{dx} = -3x^{2}-y+2$ $\frac{dy}{dx} = \frac{2-y-3x^{2}}{x}$ b) $y= \frac{1+2x-x^{3}}{x}$ $y = \frac{1}{x} + \frac{2x}{x} - \frac{x^{3}}{x}$ $y = x^{-1}+2-x^{2}$ Differentiating : $\frac{dy}{dx} = -\frac{1}{x^{2}}-2x$ c) $\frac{dy}{dx} = \frac{2-(\frac{1}{x}+2-x^{2})-3x^{2}}{x}$ Simplifying : $\frac{dy}{dx} = \frac{2x-(1+2x-x^{3})-3x^{3}}{x^{2}}$ $\frac{dy}{dx} = \frac{-1+x^{3}-3x^{3}}{x^{2}}$ $\frac{dy}{dx} = \frac{-1-2x^{3}}{x^{2}}$ $\frac{dy}{dx} = -\frac{1}{x^{2}}-2x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.