Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 48

Answer

$$\Delta y \approx 0.37$$

Work Step by Step

$$\eqalign{ & y = x\sqrt {8x + 1} ;{\text{ from }}x = 3{\text{ to }}x = 3.05 \cr & {\text{Calculate }}f'\left( x \right){\text{ and }}dx \cr & f\left( x \right) = x\sqrt {8x + 1} \cr & f'\left( x \right) = x\left( {\frac{8}{{2\sqrt {8x + 1} }}} \right) + \sqrt {8x + 1} \cr & f'\left( x \right) = \frac{{4x}}{{\sqrt {8x + 1} }} + \sqrt {8x + 1} \cr & dx = \Delta x \cr & dx = 3.05 - 3 \cr & dx = 0.05 \cr & \cr & \Delta y \approx f'\left( x \right)dx = dy \cr & \Delta y \approx \left[ {\frac{{4x}}{{\sqrt {8x + 1} }} + \sqrt {8x + 1} } \right]dx \cr & {\text{Substitute }}dx = - 0.04{\text{ and }}x = 3 \cr & \Delta y \approx \left[ {\frac{{4\left( 3 \right)}}{{\sqrt {8\left( 3 \right) + 1} }} + \sqrt {8\left( 3 \right) + 1} } \right]\left( {0.05} \right) \cr & \Delta y \approx \left( {\frac{{12}}{5} + 5} \right)\left( {0.05} \right) \cr & \Delta y \approx 0.37 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.