Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 46

Answer

$$\Delta y \approx - 0.01$$

Work Step by Step

$$\eqalign{ & y = \sqrt {{x^2} + 8} ;{\text{ from }}x = 1{\text{ to }}x = 0.97 \cr & {\text{Calculate }}f'\left( x \right){\text{ and }}dx \cr & f\left( x \right) = \sqrt {{x^2} + 8} \cr & f'\left( x \right) = \frac{{2x}}{{2\sqrt {{x^2} + 8} }} \cr & f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + 8} }} \cr & dx = \Delta x \cr & dx = 0.97 - 1 \cr & dx = - 0.03 \cr & \cr & \Delta y \approx f'\left( x \right)dx = dy \cr & \Delta y \approx \frac{x}{{\sqrt {{x^2} + 8} }}dx \cr & {\text{Substitute }}dx = - 0.03{\text{ and }}x = 1 \cr & \Delta y \approx \frac{1}{{\sqrt {{{\left( 1 \right)}^2} + 8} }}\left( { - 0.03} \right) \cr & \Delta y \approx - 0.01 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.