Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 47

Answer

$$\Delta y \approx 0.0048$$

Work Step by Step

$$\eqalign{ & y = \frac{x}{{{x^2} + 1}};{\text{ from }}x = 2{\text{ to }}x = 1.96 \cr & {\text{Calculate }}f'\left( x \right){\text{ and }}dx \cr & f\left( x \right) = \frac{x}{{{x^2} + 1}} \cr & f'\left( x \right) = \frac{{{x^2} + 1 - x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{{x^2} + 1 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} \cr & f'\left( x \right) = \frac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} \cr & dx = \Delta x \cr & dx = 1.96 - 2 \cr & dx = - 0.04 \cr & \cr & \Delta y \approx f'\left( x \right)dx = dy \cr & \Delta y \approx \frac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx \cr & {\text{Substitute }}dx = - 0.04{\text{ and }}x = 2 \cr & \Delta y \approx \frac{{1 - {{\left( 2 \right)}^2}}}{{{{\left( {{{\left( 2 \right)}^2} + 1} \right)}^2}}}\left( { - 0.04} \right) \cr & \Delta y \approx 0.0048 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.