Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 36

Answer

$$\Delta y = \sin x\cos \Delta x + \sin \Delta x\cos x - \sin x\,\,\,{\text{ }}\,{\text{and}}\,\,\,{\text{ }}dy = \cos xdx$$

Work Step by Step

$$\eqalign{ & {\text{Let }}y = \sin x \cr & \cr & {\text{Calculating }}\Delta y.\,\,\,f\left( x \right) = \sin x \cr & \Delta y = f\left( {x + \Delta x} \right) - f\left( x \right) \cr & {\text{Then evaluating }} \cr & \Delta y = \sin \left( {x + \Delta x} \right) - \sin x \cr & {\text{Use sin}}\left( {A + B} \right) = \sin A\cos B + \sin B\cos A \cr & \Delta y = \sin x\cos \Delta x + \sin \Delta x\cos x - \sin x \cr & \cr & {\text{and}} \cr & y = \sin x \cr & \frac{{dy}}{{dx}} = \cos x,{\text{ so }}dy = \cos xdx \cr & \cr & \Delta y = \sin x\cos \Delta x + \sin \Delta x\cos x - \sin x\,\,\,{\text{ }}\,{\text{and}}\,\,\,{\text{ }}dy = \cos xdx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.