Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 33

Answer

$$\Delta y = 3{x^2}\Delta x + 3x\Delta {x^2} + \Delta {x^3}\,\,\,{\text{ and}}\,\,\,{\text{ }}dy = 3{x^2}dx$$

Work Step by Step

$$\eqalign{ & {\text{Let }}y = {x^3} \cr & \cr & {\text{Calculating }}\Delta y.\,\,\,f\left( x \right) = {x^3} \cr & \Delta y = f\left( {x + \Delta x} \right) - f\left( x \right) \cr & {\text{Then evaluating }} \cr & \Delta y = {\left( {x + \Delta x} \right)^3} - {x^3} \cr & \Delta y = {x^3} + 3{x^2}\Delta x + 3x\Delta {x^2} + \Delta {x^3} - {x^3} \cr & {\text{Simplifying}} \cr & \Delta y = 3{x^2}\Delta x + 3x\Delta {x^2} + \Delta {x^3} \cr & \cr & {\text{and}} \cr & y = {x^3} \cr & \frac{{dy}}{{dx}} = 3{x^2},{\text{ so }}dy = 3{x^2}dx \cr & \cr & \Delta y = 3{x^2}\Delta x + 3x\Delta {x^2} + \Delta {x^3}\,\,\,{\text{ and}}\,\,\,{\text{ }}dy = 3{x^2}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.