Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 38

Answer

$$\left( {\text{a}} \right)dy = - \frac{1}{{{x^2}}}dx{\text{ and }}\left( {\text{b}} \right)\,dy = 5{\sec ^2}xdx$$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right)y = \frac{1}{x} \cr & {\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = - \frac{1}{{{x^2}}} \cr & {\text{Then}} \cr & \,\,dy = - \frac{1}{{{x^2}}}dx \cr & \cr & \left( {\text{b}} \right)y = 5\tan x \cr & {\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = 5{\sec ^2}x \cr & {\text{Then}} \cr & \,\,dy = 5{\sec ^2}xdx \cr & \cr & \left( {\text{a}} \right)dy = - \frac{1}{{{x^2}}}dx{\text{ and }}\left( {\text{b}} \right)\,dy = 5{\sec ^2}xdx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.