Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 39

Answer

$$\left( {\text{a}} \right)dy = \frac{{2 - 3x}}{{2\sqrt {1 - x} }}dx{\text{ and }}\left( {\text{b}} \right)\,dy = - \frac{{17}}{{{{\left( {1 + x} \right)}^{18}}}}dx$$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right)y = x\sqrt {1 - x} \cr & {\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = x\left( {\frac{{ - 1}}{{2\sqrt {1 - x} }}} \right) + \sqrt {1 - x} \cr & \,\,\,\frac{{dy}}{{dx}} = \frac{{ - x + 2\left( {1 - x} \right)}}{{2\sqrt {1 - x} }} \cr & \,\,\,\frac{{dy}}{{dx}} = \frac{{2 - 3x}}{{2\sqrt {1 - x} }} \cr & {\text{Then}} \cr & \,\,dy = \frac{{2 - 3x}}{{2\sqrt {1 - x} }}dx \cr & \cr & \left( {\text{b}} \right)y = {\left( {1 + x} \right)^{ - 17}} \cr & {\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = - 17{\left( {1 + x} \right)^{ - 18}}\left( 1 \right) \cr & {\text{Then}} \cr & \,\,dy = - \frac{{17}}{{{{\left( {1 + x} \right)}^{18}}}}dx \cr & \cr & \left( {\text{a}} \right)dy = \frac{{2 - 3x}}{{2\sqrt {1 - x} }}dx{\text{ and }}\left( {\text{b}} \right)\,dy = - \frac{{17}}{{{{\left( {1 + x} \right)}^{18}}}}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.