Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 35

Answer

$$\Delta y = 2x\Delta x + \Delta {x^2} - 2\Delta x\,\,\,\,{\text{ and}}\,\,\,{\text{ }}dy = \left( {2x - 2} \right)dx$$

Work Step by Step

$$\eqalign{ & {\text{Let }}y = {x^2} - 2x + 1 \cr & \cr & {\text{Calculating }}\Delta y.\,\,\,f\left( x \right) = {x^2} - 2x + 1 \cr & \Delta y = f\left( {x + \Delta x} \right) - f\left( x \right) \cr & {\text{Then evaluating }} \cr & \Delta y = {\left( {x + \Delta x} \right)^2} - 2\left( {x + \Delta x} \right) + 1 - \left( {{x^2} - 2x + 1} \right) \cr & \Delta y = {x^2} + 2x\Delta x + \Delta {x^2} - 2x - 2\Delta x + 1 - {x^2} + 2x - 1 \cr & {\text{Simplifying}} \cr & \Delta y = 2x\Delta x + \Delta {x^2} - 2\Delta x \cr & \cr & {\text{and}} \cr & y = {x^2} - 2x + 1 \cr & \frac{{dy}}{{dx}} = \left( {2x - 2} \right),{\text{ so }}dy = \left( {2x - 2} \right)dx \cr & \cr & \Delta y = 2x\Delta x + \Delta {x^2} - 2\Delta x\,\,\,\,{\text{ and}}\,\,\,{\text{ }}dy = \left( {2x - 2} \right)dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.