Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 45

Answer

$$\Delta y \approx 0.0225$$

Work Step by Step

$$\eqalign{ & y = \sqrt {3x - 2} ;{\text{ from }}x = 2{\text{ to }}x = 2.03 \cr & {\text{Calculate }}f'\left( x \right){\text{ and }}dx \cr & f\left( x \right) = \sqrt {3x - 2} \cr & f'\left( x \right) = \frac{3}{{2\sqrt {3x - 2} }} \cr & dx = \Delta x \cr & dx = 2.03 - 2 \cr & dx = 0.03 \cr & \cr & \Delta y \approx f'\left( x \right)dx = dy \cr & \Delta y \approx \frac{3}{{2\sqrt {3x - 2} }}dx \cr & {\text{Substitute }}dx = 0.03{\text{ and }}x = 2 \cr & \Delta y \approx \frac{3}{{2\sqrt {3\left( 2 \right) - 2} }}\left( {0.03} \right) \cr & \Delta y \approx 0.0225 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.