Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 40

Answer

$$\left( {\text{a}} \right)dy = - \frac{{3{x^2}}}{{{{\left( {{x^3} - 1} \right)}^2}}}dx{\text{ and }}\left( {\text{b}} \right)\,dy = \frac{{ - 6{x^2} + 2{x^3} + 1}}{{{{\left( {2 - x} \right)}^2}}}dx$$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right)y = \frac{1}{{{x^3} - 1}} \cr & \,\,\,\,\,y = {\left( {{x^3} - 1} \right)^{ - 1}} \cr & \,{\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = - {\left( {{x^3} - 1} \right)^{ - 2}}\left( {3{x^2}} \right) \cr & \,\,\,\frac{{dy}}{{dx}} = - \frac{{3{x^2}}}{{{{\left( {{x^3} - 1} \right)}^2}}} \cr & {\text{Then}} \cr & \,\,dy = - \frac{{3{x^2}}}{{{{\left( {{x^3} - 1} \right)}^2}}}dx \cr & \cr & \left( {\text{b}} \right)y = \frac{{1 - {x^3}}}{{2 - x}} \cr & {\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = \frac{{\left( {2 - x} \right)\left( { - 3{x^2}} \right) - \left( {1 - {x^3}} \right)\left( { - 1} \right)}}{{{{\left( {2 - x} \right)}^2}}} \cr & {\text{Then}} \cr & \,\,\,\frac{{dy}}{{dx}} = \frac{{ - 6{x^2} + 3{x^3} + 1 - {x^3}}}{{{{\left( {2 - x} \right)}^2}}} \cr & \,\,\,dy = \frac{{ - 6{x^2} + 2{x^3} + 1}}{{{{\left( {2 - x} \right)}^2}}}dx \cr & \cr & \left( {\text{a}} \right)dy = - \frac{{3{x^2}}}{{{{\left( {{x^3} - 1} \right)}^2}}}dx{\text{ and }}\left( {\text{b}} \right)\,dy = \frac{{ - 6{x^2} + 2{x^3} + 1}}{{{{\left( {2 - x} \right)}^2}}}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.