Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 182: 37

Answer

$$\left( {\text{a}} \right)dy = \left( {12{x^2} - 14x} \right)dx{\text{ and }}\left( {\text{b}} \right)dy = \left( {\cos x - x\sin x} \right)dx$$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right)y = 4{x^3} - 7{x^2} \cr & {\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = 12{x^2} - 14x \cr & {\text{Then}} \cr & \,\,dy = \left( {12{x^2} - 14x} \right)dx \cr & \cr & \left( {\text{b}} \right)y = x\cos x \cr & {\text{Calculate }}\frac{{dy}}{{dx}} \cr & \,\,\,\frac{{dy}}{{dx}} = x\left( { - \sin x} \right) + \cos x \cr & {\text{Then}} \cr & \,\,dy = \left( {\cos x - x\sin x} \right)dx \cr & \cr & \left( {\text{a}} \right)dy = \left( {12{x^2} - 14x} \right)dx{\text{ and }}\left( {\text{b}} \right)dy = \left( {\cos x - x\sin x} \right)dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.