Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.4 Solving Quadratic Equations by the Square Root Property and Completing the Square - 4.4 Exercises - Page 348: 33

Answer

$\dfrac{-11+\sqrt{137}}{2}$; $\dfrac{-11-\sqrt{137}}{2}$

Work Step by Step

We start by completing the square in line $1$ of the equation by dividing the coefficient of the $11t$ term by $2$ and squaring it and adding the result on both sides. $$ \begin{aligned} t^2+11t & = 4 \\ t^2+11t & = 4 \\ t^2+11t+\left(\frac{11}{2}\right)^2 & =4+\left(\frac{11}{2}\right)^2 \\ t^2+11t+\frac{121}{4} & =4+\frac{121}{4} \\ \left(t+\frac{11}{2}\right)^2 & =\frac{137}{4}. \end{aligned} $$ Take the square root: $$ \begin{array}{rl} t+\dfrac{11}{2} & = \pm \dfrac{\sqrt{137}}{2} \\\\ t+\dfrac{11}{2}=\dfrac{\sqrt{137}}{2} &\ \textbf{or}\ \ \ t+\dfrac{11}{2}=-\dfrac{\sqrt{137}}{2}\\ t=\dfrac{-11+\sqrt{137}}{2} & \ \textbf{or}\ \ \ t=\dfrac{-11-\sqrt{137}}{2}. \end{array} $$ Check $$\begin{aligned} \left(\dfrac{-11+\sqrt{137}}{2}\right)^2+11\left(\dfrac{-11+\sqrt{137}}{2}\right) & \stackrel{?}{=} 4 \\ \dfrac{121-22\sqrt{137}+137-242+22\sqrt{137}}{4}&\stackrel{?}{=}4\\ 4& = 4\checkmark\\ \left(\dfrac{-11-\sqrt{137}}{2}\right)^2+11\left(\dfrac{-11-\sqrt{137}}{2}\right) & \stackrel{?}{=} 4 \\ \dfrac{121+22\sqrt{137}+137-242-22\sqrt{137}}{4}&\stackrel{?}{=}4\\ 4& = 4\checkmark. \end{aligned}$$ The solution is: $$t=\dfrac{-11+\sqrt{137}}{2} \quad \ \textbf{or}\ \ \ t=\dfrac{-11-\sqrt{137}}{2}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.