Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.4 Solving Quadratic Equations by the Square Root Property and Completing the Square - 4.4 Exercises - Page 348: 29

Answer

$k=8+\sqrt{67}, k=8-\sqrt{67}$

Work Step by Step

We start by completing the square in line $1$ of the equation by dividing the coefficient of the $16k$ term by $2$ and squaring it and adding the result on both sides. $$ \begin{aligned} k^2-16k & = 3 \\ k^2-16k+\left(\frac{16}{2}\right)^2 & =3+\left(\frac{16}{2}\right)^2 \\ k^2-16k+8^2 & =3+8^2 \\ (k-8)^2 & =67. \end{aligned} $$ Take the square root: $$ \begin{array}{rl} (k-8)^2 & =67 \\ k-8 & = \pm \sqrt{67} \\ k-8= \sqrt{67} &\ \textbf{or}\ \ \ k-8=-\sqrt{67}\\ k=8+\sqrt{67} & \ \textbf{or}\ \ \ k= 8-\sqrt{67}.\end{array} $$ Check $$\begin{aligned} (8+\sqrt{67})^2-16(8+\sqrt{67}) & \stackrel{?}{=} 3\\ 64+16\sqrt{67}+67-128-16\sqrt{67}& \stackrel{?}{=}3\\ 3& = 3\checkmark. \end{aligned}$$ $$\begin{aligned} (8-\sqrt{67})^2-16(8-\sqrt{67}) & \stackrel{?}{=} 3\\ 64-16\sqrt{67}+67-128+16\sqrt{67}& \stackrel{?}{=}3\\ 3& = 3\checkmark. \end{aligned}$$ The solution is $$k=8+\sqrt{67}, k=8-\sqrt{67}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.