Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 7 - Cumulative Review - Page 472: 19

Answer

$(\frac{-21}{10},\frac{3}{10})$

Work Step by Step

Given Equations, $\frac{-x}{6} + \frac{y}{2} = \frac{1}{2}$ Equation $(1)$ $\frac{x}{3} - \frac{y}{6} = \frac{-3}{4}$ Equation $(2)$ Taking LCD, Multiply Equation $(1)$ by $6$ and multiply Equation $(2)$ by $12$ $6(\frac{-x}{6} + \frac{y}{2} )= 6(\frac{1}{2})$ $-x+3y=3$ Equation $(3)$ $12(\frac{x}{3} - \frac{y}{6}) = 12(\frac{-3}{4})$ $4x-2y=-9$ Equation $(4)$ From Equation $(3)$, $-x+3y=3$ $-x=3-3y$ $x=3y-3$ Substituting $x$ in Equation $(4)$ $4x-2y=-9$ $4(3y-3)-2y=-9$ $12y-12-2y=-9$ $10y-12=-9$ $10y=-9+12$ $10y=3$ $y=\frac{3}{10}$ Substituting $y$ value in Equation $x=3y-3$ we get, $x=3y-3$ $x=3(\frac{3}{10})-3$ $x=\frac{9}{10}-3$ $x=\frac{9-30}{10}$ $x=\frac{-21}{10}$ Solution: $(\frac{-21}{10},\frac{3}{10})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.