Answer
See below
Work Step by Step
Given: $x(t)=2e^{3t}-\int^t_0 e^{2(t-\tau)}x(\tau)d\tau$
Taking the Laplace transformation:
$L[x(t)]=L[2e^{3t}-\int^t_0 e^{2(t-\tau)}x(\tau)d\tau]$
we have:
$x(s)=\frac{2}{s-3}-L[e^{2t}*x(t)]$
Apply convolution theorem:
$x(s)=\frac{2}{s-3}-\frac{1}{s-2}x(s)\\
=\frac{2(s-2)}{(s-1)(s-3)}\\
=\frac{1}{s-3}+\frac{1}{s-1}$
Hence, the general solution is:
$x(t)=e^{3t}+e^t$