Answer
See below
Work Step by Step
We are given: $f(t)=e^t\\
g(t)=e^t \sin t$
Obtain: $(f * g)=\int^t_0f(t-x)g(x)dx\\
=\int^t_0 e^{t-x} e^x \sin xdx\\
=e^t \int^t_0 \sin xdx\\
=\begin{bmatrix}
-e^t \cos x
\end{bmatrix}^t_0\\
=e^t (1-\cos t)$