Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.9 The Convolution Integral - Problems - Page 716: 5

Answer

See below

Work Step by Step

We are given: $f(t)=t^2\\ g(t)=e^t$ Obtain: $(f * g)=\int^t_0f(t-x)g(x)dx\\ =\int^t_0 e^{x} (t-x)^2 dx\\ =\int^t_0 e^{x}(t^2-2tx+x^2) dx\\ =t^2\int^t_0 e^x dx-2t \int^t_0 xe^x dx+\int^t_0 x^2e^x dx\\ =\begin{bmatrix} t^2e^x -2t(xe^x-e^x)+x^2e^x-2xe^x+2e^x \end{bmatrix}^t_0\\ =2e^t-t^2-2t-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.