Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.9 The Convolution Integral - Problems - Page 716: 20

Answer

See below

Work Step by Step

Given: $F(s)=\frac{1}{s^2}\\ G(s)=\frac{e^{-\pi s}}{s^2+1}$ a) Using the Convolution Theorem $L^{-1}[F(s)* G(s)]=L^{-1}[\frac{1}{s^2}.\frac{e^{-\pi s}}{s^2+1}]\\ =L^{-1}[\frac{1}{s^2}].L^{-1}[\frac{e^{-\pi s}}{s^2+1}]\\ =txu_{\pi}(t)\sin (t-\pi)\\ =\int^t_0 (t-x)u_{\pi}(x)\sin (x-\pi) dx\\ =\int^t_0 (t-x)u_{\pi}(x)\sin x dx\\ =u_{\pi}(t)\begin{bmatrix} \sin x-x\cos x+t\cos x \end{bmatrix}^t_{\pi}\\ =u_{\pi}(t)(\sin t-\pi + t)$ b) Using partial fractions. $L^{-1}[F(s) * G(s)]=L^{-1}[\frac{1}{s^2}.\frac{e^{-\pi s}}{s^2+1}]\\ =L^{-1}[e^{-\pi s}(\frac{1}{s^2}-\frac{1}{s^2+1})\\ =L^{-1}[e^{-\pi s}\frac{1}{s^2}]-L^{-1}[e^{-\pi s}\frac{1}{s^2+1}]\\ =u_{\pi}(t)(t-\pi +\ sin t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.