Answer
See below
Work Step by Step
Given: $y''-a^2y=f(t)$
Since $y(0)=\alpha\\
y'(0)=\beta$
obtain: $L[y]=\frac{F(s)}{s^2-a^2}+\frac{s\alpha}{s^2-a^2}+\frac{\beta}{s^2-a^2}$
Using the Convolution Theorem
$y(t)=L^{-1}[\frac{F(s)}{s^2-a^2}]+L^{-1}[\frac{s\alpha}{s^2-a^2}]+L^{-1}[\frac{\beta}{s^2-a^2}]\\
=\frac{1}{A}\beta\sin(at)+\alpha \cos (at)+\int^t_0 \sin(a\tau)f(t-\tau)d \tau$