Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.9 The Convolution Integral - Problems - Page 716: 31

Answer

See below

Work Step by Step

Given: $y''-(a+b)y'+aby=f(t)$ Since $y(0)=\alpha\\ y'(0)=\beta$ obtain: $L[y]=\frac{F(s)}{(s-a)(s-b)}+\frac{\alpha}{s-b}+\frac{\beta-b\alpha}{(s-a)(s-b)}$ Using the Convolution Theorem $y(t)=L^{-1}[\frac{F(s)}{(s-a)(s-b)}]+L^{-1}[\frac{\alpha}{s-b}]+L^{-1}[\frac{\beta-b\alpha}{(s-a)(s-b)}]\\ =\alpha e^{bt}+\frac{\beta-b\alpha}{a-b}(e^{at}-e^{bt})+\frac{1}{a-b}\int^t_0 (e^{a\tau}-e^{b\tau})f(t-\tau)d \tau$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.