Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.9 The Convolution Integral - Problems - Page 716: 32

Answer

See below

Work Step by Step

Given: $y''-2ay'+(a^2+b^2)y=f(t)$ Since $y(0)=\alpha\\ y'(0)=\beta$ obtain: $L[y]=\frac{F(s)}{(s-a)^2+b^2}+\frac{\alpha(s-a)}{(s-a)^2+b^2}+\frac{\beta-a\alpha}{(s-a)^2+b^2}$ Using the Convolution Theorem $y(t)=L^{-1}[\frac{F(s)}{(s-a)^2+b^2}]+L^{-1}[\frac{\alpha(s-a)}{(s-a)^2+b^2}]+L^{-1}[\frac{\beta-a\alpha}{(s-a)^2+b^2}]\\ =\alpha e^{at}\cos (bt)+\frac{\beta-a\alpha}{a-b}e^{at}\sin (bt)+\frac{1}{b}\int^t_0 e^{a\tau}\sin (b\tau)f(t-\tau)d \tau$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.