Answer
See below
Work Step by Step
Given: $y''-ay=f(t)$
Since $y(0)=\alpha$
obtain: $L[y]=\frac{F(s)}{s^2-ay}+\frac{\alpha}{s^2-a}$
Using the Convolution Theorem
$y(t)=L^{-1}[\frac{F(s)}{s^2-ay}]+L^{-1}[\frac{\alpha}{s^2-a}]\\
=\frac{1}{\sqrt a}\alpha\sin(at)+\int^t_0 \sin(\sqrt at)f(t-\tau)d \tau$