Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.9 The Convolution Integral - Problems - Page 716: 18

Answer

See below

Work Step by Step

Given: $F(s)=\frac{1}{s+2}\\ G(s)=\frac{s+2}{s^2+4s+13}$ a) Using the Convolution Theorem $L^{-1}[F(s)* G(s)]=L^{-1}[\frac{1}{s+2}.\frac{s+2}{s^2+4s+13}]\\ =L^{-1}[\frac{1}{s+2}].L^{-1}[\frac{s+2}{s^2+4s+13}]\\ =e^{-2t}.e^{-2t}\cos 3t\\ =\int^t_0 e^{-2(t-x)}e^{-2x}\cos 3xdx\\ =e^{-2t}\int^t_0 \cos 3x dx\\ =\begin{bmatrix} \frac{e^{-2t}}{3}\sin 3x \end{bmatrix}^t_0\\ =\frac{e^{-2t}}{3}\sin 3t$ b) Using partial fractions. $L^{-1}[F(s) * G(s)]=L^{-1} \begin{bmatrix} \frac{1}{s+2}.\frac{s+2}{s^2+4s+13} \end{bmatrix}\\ =L^{-1}\begin{bmatrix} \frac{1}{s^2+4s+13} \end{bmatrix}\\ =\frac{1}{3}L^{-1}\begin{bmatrix} \frac{3}{(s+2)^2+9} \end{bmatrix}\\ =\frac{e^{-2t}}{2}\sin 3t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.