Answer
See below
Work Step by Step
Given: $x(t)=4e^{t}+3\int^t_0 e^{-(t-\tau)}x(\tau)d\tau$
Taking the Laplace transformation:
$L[x(t)]=L[4e^{t}+3\int^t_0 e^{-(t-\tau)}x(\tau)d\tau]$
we have:
$x(s)=\frac{4}{s-1}+\frac{3}{s+1}L[x(t)]$
Apply convolution theorem:
$x(s)=\frac{4s+4}{(s-1)(s-2)}\\
=-\frac{8}{s-1}+\frac{12}{s-22}$
Hence, the general solution is:
$x(t)=-8e^{t}+12e^{2t}$