Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 45

Answer

See below

Work Step by Step

We are given that $y'2-y=f(t)$ and $y(0)=2$ where $f(t)=t+(1-t)u_1(t)+(2-t)u_2(t)+(t-3)u_3(t)$ We take the Laplace transform of both sides of the differential equation to obtain: $[sY(s)-y(0)]-2Y(s)=\frac{1}{s^2}-\frac{e^{-s}}{s^2}+\frac{e^{-2s}}{s^2}+\frac{e^{-3s}}{s^2}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s-2)=\frac{1}{s^2}-\frac{e^{-s}}{s^2}+\frac{e^{-2s}}{s^2}+\frac{e^{-3s}}{s^2}\\ Y(s)(s-2)=\frac{1}{s^2}-\frac{e^{-s}}{s^2}+\frac{e^{-2s}}{s^2}+\frac{e^{-3s}}{s^2}$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{1}{s^2(s-2)}-\frac{e^{-s}}{s^2(s-2)}+\frac{e^{-2s}}{s^2(s-2)}+\frac{e^{-3s}}{s^2(s-2)}\\= (1-e^{-s}-e^{-2s}+e^{-3s}[-\frac{1}{4s}-\frac{1}{2s^2}+\frac{1}{4(s-1)}]$ Now,$f(t)= L^{-1}[(1-e^{-s}-e^{-2s}+e^{-3s}[-\frac{1}{4s}-\frac{1}{2s^2}+\frac{1}{4(s-1)})]\\ =-\frac{1}{4}-\frac{t}{2}+\frac{e^{2t}}{4}+(\frac{1}{4}+\frac{t-1}{2}-\frac{e^{2(t-1)}}{4})u_1(t)+(\frac{1}{4}+\frac{t-2}{2}-\frac{e^{2(t-2)}}{4})u_2(t)+(\frac{1}{4}+\frac{t-3}{2}-\frac{e^{2(t-3)}}{4})u_3(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.