Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 34

Answer

See below

Work Step by Step

We are given that $y''-y'-2y=10e^{-(t-a)}\sin[2(t-a)]u_a(t)$ and $y(0)=2\\ y'(0)=0$ We take the Laplace transform of both sides of the differential equation to obtain: $[s^2Y(s)-sY(0)-Y'(0)]-3Y(s)=\frac{e^{-s}}{s}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s^2-1)-2s=\frac{e^{-s}}{s}\\ Y(s)(s^2-1)=\frac{e^{-s}}{s}+2s$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{e^{-s}}{s(s^2-1)}+\frac{2s}{s^2-1}\\ =\frac{-e^{-s}}{s}+\frac{e^{-s}}{2(s+1)}+\frac{e^{-s}}{2(s-1)}-\frac{1}{s+1}-\frac{1}{s-1}\\\ =e^{-s}(\frac{-1}{s}+\frac{1}{2(s+1)+\frac{1}{2(s-1)}}-(\frac{1}{s+1}+\frac{1}{s-1})$ Now,$f(t)= L^{-1}[e^{-s}(\frac{-1}{s}+\frac{1}{2(s+1)+\frac{1}{2(s-1)}}-(\frac{1}{s+1}+\frac{1}{s-1})]\\ =-u_1(t)+\frac{1}{2}e^{-(t-1)}u_1(t)+\frac{1}{2}u_1(t)e^{t-1}-e^{-t}-e^t\\ =u_1(t)[-1+\frac{1}{2}e^{-(t-1)}+\frac{1}{2}e^{t-1}]-e^{-t}-e^t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.