Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 44

Answer

See below

Work Step by Step

We are given that $y'-y=f(t)$ and $y(0)=2$ where $f(t)=t[1-u_1(t)]+e^{-(t-1)}u_1(t)\\ =t+[e^{-(t-1)}-(t-1)-1]u_1(t)$ We take the Laplace transform of both sides of the differential equation to obtain: $[sY(s)-y(0)]-Y(s)=\frac{1}{s^2}+\frac{e^{-s}}{s+1}-\frac{e^{-s}}{s^2}-\frac{e^{-s}}{s}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s-1)-2=\frac{1}{s^2}+e^{-s}(\frac{1}{s+1}-\frac{1}{s^2}-\frac{1}{s})\\ Y(s)(s-1)=\frac{1}{s^2}+e^{-s}(\frac{1}{s+1}-\frac{1}{s^2}-\frac{1}{s})+2$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{1}{s^2(s-1)}+e^{-s}[\frac{1}{(s+1)(s-1)}-\frac{1}{s^2(s-1)}-\frac{1}{s(s-1)}]+\frac{2}{s-1}\\ =-\frac{1}{s}-\frac{1}{s^2}+\frac{1}{s-1}+e^{-s}[\frac{1}{2(s-1)}-\frac{1}{2(s+1)}-(\frac{-1}{s}-\frac{1}{s^2}+\frac{1}{s-1})-(\frac{1}{s-1}-\frac{1}{s})]+\frac{2}{s-1}$ Now,$f(t)= L^{-1}[-\frac{1}{s}-\frac{1}{s^2}+\frac{1}{s-1}+e^{-s}[\frac{1}{2(s-1)}-\frac{1}{2(s+1)}-(\frac{-1}{s}-\frac{1}{s^2}+\frac{1}{s-1})-(\frac{1}{s-1}-\frac{1}{s})]+\frac{2}{s-1}]\\ =-1-t+e^t+[\frac{1}{2}(e^{t-1}-e^{-(t-1)})+(1+t-e^{-(t-1)})-(e^{t-1}-1)]+2e^t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.