Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 43

Answer

See below

Work Step by Step

We are given that $y'+2y=f(t)$ and $y(0)=0$ where $f(t)=(1-t)[1-u_1(t)]\\ =(1-t)+u_1(t)(t-1)$ We take the Laplace transform of both sides of the differential equation to obtain: $[sY(s)-y(0)]+2Y(s)=\frac{1}{s}-\frac{1}{s^2}+\frac{e^{-s}}{s^2}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s+2)+0=\frac{1}{s}-\frac{1}{s^2}+\frac{e^{-s}}{s^2}$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{1}{s(s+2)}-\frac{1}{s^2(s+2)}+\frac{e^{-s}}{s^2(s+2)}\\ =\frac{1}{2}(\frac{1}{s}-\frac{1}{s+2})+e^{-s}(-\frac{1}{4s}+\frac{1}{2s^2}+\frac{1}{4(s+2)})+\frac{1}{4s}-\frac{1}{2s^2}-\frac{1}{4(s+2)}$ Now,$f(t)= L^{-1}[\frac{1}{2}(\frac{1}{s}-\frac{1}{s+2})+e^{-s}(-\frac{1}{4s}+\frac{1}{2s^2}+\frac{1}{4(s+2)})+\frac{1}{4s}-\frac{1}{2s^2}-\frac{1}{4(s+2)}]\\ =\frac{1}{2}(1-e^{-2t})+[-\frac{1}{4}+\frac{1}{2}(t-1)+\frac{1}{4}e^{-2(t-1)}]+\frac{1}{4}-\frac{t}{2}-\frac{e^{-2t}}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.