Answer
See below
Work Step by Step
We are given that $F(s)=\frac{2e^{-2s}}{(s-1)(s^2+1)}$
Now,$f(t)= L^{-1}[\frac{2e^{-2s}}{(s-1)(s^2+1)}]\\
=L^{-1}[\frac{e^{-2s}}{s-1}-\frac{se^{-2s}}{s^2+1}-\frac{e^{-2s}}{s^2+1}]\\
=u_2(t)[e^{t-2}-\cos (t-2)-\sin (t-2)]$