Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 36

Answer

See below

Work Step by Step

We are given that $y''-4y=u_1(t)-u_2(t) $ and $y(0)=0\\ y'(0)=4$ We take the Laplace transform of both sides of the differential equation to obtain: $[s^2Y(s)-sY(0)-Y'(0)]-4Y(s)=\frac{e^{-s}}{s}-\frac{e^{-2s}}{s}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s^2-4)-4=\frac{e^{-s}}{s}-\frac{e^{-2s}}{s}\\ Y(s)(s^2-4)=\frac{e^{-s}}{s}-\frac{e^{-2s}}{s}+4$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{e^{-s}}{s(s-1)(s+2)}-\frac{e^{-2s}}{s(s-2)(s+2)}+\frac{4}{(s-2)(s+2)}\\ =\frac{e^{-s}}{4}(\frac{-1}{s}+\frac{1}{s-2}+\frac{1}{s+2})+\frac{e^{-2s}}{4}(\frac{1}{s}-\frac{1}{s-2}-\frac{1}{s+2})+(\frac{1}{s-2}-\frac{1}{s+2})$ Now,$f(t)= L^{-1}[\frac{e^{-s}}{4}(\frac{-1}{s}+\frac{1}{s-2}+\frac{1}{s+2})+\frac{e^{-2s}}{4}(\frac{1}{s}-\frac{1}{s-2}-\frac{1}{s+2})+(\frac{1}{s-2}-\frac{1}{s+2})]\\ =\frac{-1}{4}(1-e^{2(t-1)}+e^{-2(t+1)})u_1(t)+\frac{1}{4}(1-e^{2(t-1)}-e^{-2(t-2)})u_2(t)+e^{2t}-e^{-2t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.